Термосифонный солнечный коллектор своими руками

Простой термосифонный солнечный коллектор без насоса своими руками

Описанная ниже конструкция — термосифонный солнечный коллектор, основан на медной трубе и алюминиевом оребрении. Медное оребрение имеет немного более эффективную теплоотдачу, но стоимость медных листов увеличивает цену коллектора в 3-4 раза. Пайка ребер к трубам -тоже непростая задача. Производительность способа переноса тепла от алюминиевых пластин медным трубам заключается в обеспечении хорошего теплового контакта. Как это реализуется — читайте ниже. По ссылке доступны тесты производительности данного прототипа.

Какова цель самодельной термосифонной системы:

  • Производительность, близкая к коммерческим коллекторам.
  • Низкая стоимость (до 1/4 от цены за покупную систему).
  • Длительный срок службы.
  • Легкость исполнения своими руками из доступных каждому материалов.

Схема термосифонного коллектора

Солнце нагревает воду, снижает ее плотность и вода поднимается в резервуар. Нагретая вода выходит из коллектора, ее постепенно замещает холодная, подающаяся естественной циркуляцией из резервуара в коллектор через нижнее соединение. Насос в данной конструкции не нужен. Контроль осуществляется автоматически, так как движение воды останавливается, как только коллектор остывает ниже температуры накопительного бака. Принцип термосифона подробно рассмотрен в этой статье.

Этот вариант термосифонного коллектора не предусматривает использование при минусовых температурах, поэтому при первых заморозках систему необходимо сливать.

В качестве примера взяты два прототипа коллектора одинаковой конфигурации, поэтому фото могут отличаться в некоторых несущественных деталях.

Коллектор

Термосифонная система своими руками

Из чего собран термосифонный солнечный коллектор:

  • Гофрированный поликарбонатный лист SunTuf.
  • Рама из пиломатериалов.
  • Фанера или ОСБ для основы.
  • Жесткая теплоизоляция (теплоизолятор может быть любым, от этого будут зависеть «слои» подложки — с жесткой изоляцией в данной конструкцией заднюю часть коллектора больше ничем не закрывали).
  • Алюминий листовой для абсорбера 0,5 мм.
  • Трубы медные.
  • Фитинги медные.
  • Термостойкий силикон.
  • Винты, краска, волнистые рейки для крепления поликарбоната (их можно изготовить из досок лобзиком).

Данная конструкция термосифонного солнечного коллектора основывается на алюминиевом абсорбере. Ребра увеличивают площадь передачи тепла от пластины к трубе и имеют паз по форме этой трубы.

2 способа сделать абсорбер медной трубы из алюминия

Использование листового алюминия в связке с медными трубами очень часто используется канадцами, американцами, австралийцами. У нас же это непопулярное решение (насколько мне известно). Кто-то занимается оксидированием меди, кто-то просто красит трубы.

Приспособление для гибки листового алюминия изготавливается из фанеры 19 мм толщиной и длиной около метра, в которой есть канавка квадратной формы 16Х16 мм. Для формирования углубления под трубу взят стальной стержень диаметром 16 мм (труба в большинстве коллекторов берется полдюймовая).

Приспособление для гибки алюминия для абсорберов солнечного коллектора
Приспособление для гибки алюминия для абсорберов солнечного коллектора

«Гнездо» для формовки алюминия сделано из двух брусков фанеры 16 мм, так приклеенных и привинченных к основе, чтобы образовать квадратную канавку. Листовой алюминий некоторых брендов уже имеет небольшой сгиб ровно по середине листа, а если его нет — нужно быть более внимательным при гибке.

Метод прессования молотком кажется неубедительным на первый взгляд, но на практике прекрасно работает. Процесс гибки алюминия с помощью прута и кувалды понятен из фото: положите металл на фанеру точно над пазом, установите стержень, придерживайте его и без сверхусилий бейте вертикально поставленным молотком по конструкции. Такой способ не дает ребрам загибаться вверх.

Пресс для листового алюминия
Пресс для листового алюминия

Как только вы «набьете руку», гибка одного абсорбера будет занимать не более 20 секунд.

Не забывайте проверять плотность прилегания абсорбера к трубе.

Фанерку для гибки всегда можно усовершенствовать держателями для стержня, ограничителем по одной стороне для того, чтобы лист алюминия не скользил по фанере.

Не стоит делать слишком длинные ребра, так как медь и алюминий расширяются с разной скоростью и короткие ребра (60-70 см) справятся с этим лучше. Ребра необходимо выровнять, опрессовать.

Существует способ полностью обернуть трубу алюминием. Пошаговые фото этого процесса смотрите ниже.

Этот метод позволяет добиться полного контакта абсорбера с медной трубой, что улучшает производительность коллектора, но и усложняет процесс создания абсорбера.

Конечно, описанные здесь способы не предел фантазии. Во время подготовки статьи мне встречались и высокотехнологичные для домашнего использования решения, такие как эти:

Самодельный пресс для алюминия

Как выровнять алюминиевые ребра абсорбера

Вероятно, можно придумать множество вариантов, как выровнять абсорбер после гибки. В данном случае автор конструкции соорудил пресс, который вы видите на фото. Ему нужно было обработать много алюминия для теплого пола и этот пресс работал быстрее и аккуратнее способа с молотком.

Самодельный пресс для алюминиевого абсорбера

Пресс продавливает алюминий закрепленным стальным стержнем. Эта конструкция вполне сносно работает благодаря длинным рычагам, увеличивающим массу тела.

Даже если оребрение идеально совпадает с формой трубы, силикон обязательно нужен для оптимизации сцепления между металлами.

Как оптимизировать сцепление между металлами

Улучшение сцепления между металлами

В канавку наносится тонкий слой термостойкого силикона. Силикон обладает теплопроводностью в 10 раз большей, чем воздух, поэтому даже при очень хорошем сцеплении он не помешает. Помимо теплопроводности, силикон уменьшает риск гальванической коррозии путем герметизации от возможной влаги. Более подробно про улучшение сцепления между абсорбером я расскажу в следующей статье.

Укладка дополнительной полосы алюминия под трубу

Укладка алюминия под медную трубу для улучшения сцепления

В некоторых прототипах коллекторов ставят еще одну пластину алюминия под каждой медной трубой. Это дополнительная зона контакта между медью и абсорбером, помогающая избежать потери тепла на внешнем крае ребра. Про эффективность алюминиевого абсорбера готовлю отдельный материал.

Изготовление труб для коллектора

Размер коллектора должен быть таким, чтобы как можно меньше осталось отходов от резки медной трубы :). На фото размер фанеры 238Х117 см (перевожу дюймы в сантиметры, поэтому цифры выглядят немного странно). Параметры основы напрямую зависят от размера материала, который накроет коллектор (стекло или поликарбонат).

Установка медных труб на коллектор

Так будет выглядеть медная решетка. Вода будет поступать в нижнем правом углу, проходить весь путь и выходить в верхнем левом.

Вырезаем трубы нужной длины. После резки необходимо зачистить места среза, особенно с внутренней стороны. На специальном инструменте для резки труб предусмотрено лезвие для этого. На фото очистка переходников и труб от остатков резки.

Резка и зачистка медных труб для солнечного коллектора

Примеряем алюминиевые ребра, подгоняем до идеального соприкосновения между отдельными деталями абсорбера. Режем отрезки трубы под соединения. Напоминаю, все замеры должны быть идеальными — расстояние между трубами должно равняться ширине ребер абсорберов.

Пайка труб для солнечного коллектора

Первый стояк получает Т-образный фитинг (на прием воды), а последний стояк получает коленчатое соединение. На другом конце коллектора колено идет к первой трубе, а тройник к последней (выход горячей воды). Такая обвязка обеспечивает примерно одинаковую циркуляцию.

Припаиваем все детали решетки.

После того, как решетка остынет, ее нужно будет тщательно отмыть от флюса жидкостью для мытья посуды.

Проверка герметичности пайки

Спаянные трубы должны пройти испытание на герметичность. На фото показан простейший способ, который прекрасно работает. Необходимо закрыть выпускное отверстие в нижнем конце и медленно наполнить сетку водой. Если у вас есть возможность использовать небольшое давление, то это вообще отлично.

Как сделать раму для солнечного коллектора

Рама должна иметь такой размер, чтобы в нее стала фанера с абсорбером. Углы скреплены шурупами и клеем. Рама в данном случае была загрунтована и покрашена эпоксидной краской.

Изготовление рамы для солнечного коллектора Изготовление рамы для солнечного коллектора

Установка трубной сетки

Прижимаем трубы к фанере, добавляем фитинги к подаче и обратке. В данной конструкции выходы предусмотрены в заднюю часть коллектора. Можно припаять впускной и выпускной клапан сразу.

Ребра абсорберы

Прокладываем полосы алюминия под трубы. Выше я уже обращал внимание, зачем это делается. Полоса силикона заполняет пустоты между трубой и пластиной. Далее наносим силикон на всю пластину.

Укладка алюминия под медную трубу для улучшения сцепления

Силикон остается гибким при тех температурах, в которых придется работать коллектору. Это очень хороший способ сохранения и передачи тепла от абсорбера к решетке. В продаже есть термостойкие силиконы с наполнителями, увеличивающими теплопроводность.

Установка абсорберов

Подгонка оребрения
Подгонка оребрения

В канавку ребра наносим полоской герметик. Слой должен быть очень тонким. Плотно прибиваем ребра к фанере с помощью степлера скобами из нержавеющей стали. В одном из прототипов используются шурупы.

Установка абсорбера
Установка алюминиевого абсорбера
Оребрение медной трубы
Закрепление оребрения степлером

Покраска абсорбера

На абсорбер необходимо нанести селективное покрытие. В гаражных условиях очень удобно воспользоваться краской для каминов и барбекю, в продаже есть и селективные краски для коллекторов.

Нужно очистить поверхность алюминия и меди от герметика и других загрязнений с помощью ацетона или другого подходящего растворителя. Абсорбер должен быть абсолютно сухим перед покраской.

Устанавливаем термосифонный солнечный коллектор в рамку.

Установка изоляции на солнечный коллектор

Жесткая теплоизоляция

В данном случае используется жесткая изоляционная плита. Полистирол брать нежелательно из-за высоких температур. На фото изоляция приклеивается полиуретановой пеной. На плиту обязательно нужно установить груз, так как пена будет пытаться расшириться.

Установка утеплителя на солнечный коллектор

Остекление солнечного коллектора

Поликарбонат для остекления коллектора

Вовсе не обязательно использовать поликарбонат, как в данном случае. Но именно гофрированный поликарбонат наиболее популярен в самоделках у американцев. Он обеспечивает высокую теплопередачу, прочный и гибкий, фильтрует ультрафиолет (так утверждает автор прототипа, но встречавшийся мне ПК был УФ-пропускающим). Для коллектора это хорошие показатели.

Подготовка рамы солнечного коллектора к остеклению
Подготовка рамы солнечного коллектора к остеклению

Листы поликарбоната в этой конфигурации соединены путем наложения гофра на гофр и склеены прозрачным силиконом.

Остекление коллектора поликарбонатом

Устанавливаем опоры для остекления. Здесь используется тонкостенная оцинкованная металлическая трубка кабелепровод. Необходимо просверлить отверстие в раме, как на фото. Проклеить паз. К слову, на фотографиях один из вариантов солнечного коллектора на трубах из сшитого полиэтилена — все делается точно так-же, как и с медью.

Покрытие коллектора поликарбонатом

На ребро рамы нужно наложить полоску древесины. Высота полоски должна соответствовать высоте «волны» поликарбоната. Уложите лист так, чтобы ребра поликарбоната можно было герметично прикрутить к раме. ПК вверху и внизу устанавливается на специальную волнистую полосу, используйте силикон для герметизации швов.

Крепление для поликарбоната

Покрытие коллектора поликарбонатом

Закрепляем вертикальный край гофры винтами с шайбами. Нельзя вкручивать винты «под завязку», вся конструкция под действием температуры будет расширяться и могут пойти трещины.

Над листом поликарбоната необходимо установить полосы древесины, которые будут равномерно прижимать его в верхней и нижней части. На фото хорошо видно, о чем я.

Установка термосифонного солнечного коллектора

Установка термосифонного солнечного коллектора

На фото видны внешние сантехнические детали. Резервуар находится прямо за стеной над коллектором. В холодном климате трубы необходимо теплоизолировать. Гофрированный подвод предусмотрен на случай каких-либо передвижений коллектора. Сливной клапан для сброса воды на зиму.

Внешние сантехнические детали коллектора Установка термосифонного солнечного коллектора

Бак для коллектора и сантехнические работы

В качестве резервуара для воды используется старый газовый бак. Устанавливать бак необходимо выше коллектора, чтобы работала естественная циркуляция. Если открыть запорные краны, горячая вода будет поступать из резервуара с холодной стороны электрического бака. Холодная вода поступает в коллектор из старого слива газового бака, горячая вода из коллектора выходит в старый выпускной клапан. Выпускной клапан установлен в резервуар и коллектор. Термодатчик так же установлен на бак и на солнечную панель.

Резервуар для солнечного коллектора

На фото бак для сбора горячей воды из коллектора. Солнечная панель находится за стеной, на выходе двух труб.

Резервный бак для солнечного коллектора

На фотографии новый электрический нагреватель для резервного подогрева. Горячая вода из коллектора поступает во входное отверстие для холодной воды в этом баке.

Существуют разные варианты резервуаров для солнечного коллектора, например такой.

Замеры температуры

При температуре около 60 градусов вода поступает в резервуар. Бак прекрасно держит температуру всю ночь, электрический нагреватель не включали. Воду из коллектора используют на стирку, душ и мытье посуды. За бортом температура воздуха была не выше 30 градусов (май 2010 года). Испытания производительности в деталях в следующей статье.

Замер температуры

Автор прототипа спустя год пользования панелью отметил, что никаких проблем не возникало.

Вариант крепления системы:

Крепление солнечного коллектора на стену здания Крепление солнечного коллектора на стену здания

Подобрал самые просматриваемые видео по похожим прототипам:

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *